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ABSTRACT

Part detection is an important aspect of object recognition.
Most approaches apply object proposals to generate hundreds
of possible part bounding box candidates which are then eval-
uated by part classifiers. Recently several methods have in-
vestigated directly regressing to a limited set of bounding
boxes from deep neural network representation. However, for
object parts such methods may be unfeasible due to their rel-
atively small size with respect to the image. We propose a
hierarchical method for object and part detection. In a sin-
gle network we first detect the object and then regress to part
location proposals based only on the feature representation
inside the object. Experiments show that our hierarchical ap-
proach outperforms a network which directly regresses the
part locations. We also show that our approach obtains part
detection accuracy comparable or better than state-of-the-art
on the CUB-200 bird and Fashionista clothing item datasets
with only a fraction of the number of part proposals.

Index Terms— Object Recognition, Part Detection, Con-
volutional Neural Networks

1. INTRODUCTION

Parts are believed to be an essential part of object category
models [1, 2]. Methods vary in the way they model spatial re-
lations between parts, the nature of the parts (semantic or un-
supervised), and the number of parts. Apart from their use for
object detection [2], parts have been applied in action recog-
nition [3] and fine grained detection [4, 5].

Approaches based on sliding windows have long domi-
nated the field of object recognition. The ability to imple-
ment these methods as a convolutional filter allows them to
quickly evaluate many windows, however the number of win-
dows to consider is vast. As a solution, object proposal meth-
ods were developed [6, 7] which use bottom-up image analy-
sis to propose a limited set of object regions. The success of
object proposals has sparked its application for part-based ob-
ject detection [5, 8]. In [5] the selective search object proposal
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method was used to generate part proposals for bird recogni-
tion. However, part detection is of different than object de-
tection. In object detection, prior knowledge of the expected
location and size of objects is limited and the generation of
thousands of object proposals based on low-level image ev-
idence is reasonable. However, parts have in general more
restricted statistics especially when we consider their posi-
tion with respect to the object location and size. Exploiting
these restrictions on the expected position and size of the part
proposals is the main objective of this paper.

Alternatives using regression to directly estimate object
proposals from CNN representations have been proposed [9].
This technique proposed for object detection is class agnostic
and still requires hundreds of proposals per image. Regress-
ing directly to parts was studied by Liang et al. [10], who
directly estimate bounding boxes of clothing items given a
person bounding box. Their method has the advantage that
only a single bounding box per clothing item class needs to
be evaluated. However, their method separates the object de-
tection (in their case the human) from the part detection.

In this paper we propose an end-to-end hierarchical object
and part detection framework. Given a CNN representation
of an image our method regresses a single object bounding
box. Next, based on the CNN representation within the ob-
ject bounding box we regress a single proposal for each of
the parts. We train the hierarchical object and part detection
network in an end-to-end fashion. To the best of our knowl-
edge, we are the first to investigate such a hierarchical net-
work for part detection. Our method has the advantage over
object proposal methods [6, 7, 5, 8, 9] that we evaluate signif-
icantly fewer bounding boxes. With respect to [10], our work
integrates object and part detection in a single network.

2. TOP-DOWN PART REGRESSION

In the recognition problems we consider in this paper, objects
we wish to localize consist of an ensemble of sub-objects, or
object parts. In the fashion recognition problems we consider
in Section 3, for example, we localize clothing items (e.g. hat,
glasses, boots, skirt, and handbag) present in images. These
problems are often characterized by having a relatively large
number of potential parts, some or most of which may not be
present in a given image.



Fig. 1. A CNN for simultaneously detecting object and object-parts. See text for detailed explanation.

2.1. Object and object-part detection by CNN

Our approach is an adaptation of some of the key ideas from
proposal-based object recognition methods [11, 12] which are
based on the evaluation of many object proposals. Some of
them apply regression to improve the proposed bounding box,
which typically leads to a small shift of the bounding box.
In [9] they directly regress to potential object bounding boxes
from the images, but they do so without taking classes into
account, and [10] regress to parts, however segmentation is
their final goal.

The main novelty of our method is that we propose a hi-
erarchical approach to object and part detection. Our aim is
to prevent having to evaluate the thousands of part propos-
als which are typically proposed by object proposal meth-
ods [5, 8]. We first regress to the object bounding box based
on the image and next regress to the part bounding boxes
based only on the features within the object bounding box.

Given an image I , we assume there is one top-level ob-
ject (e.g. “person” for clothing item detection). This top-level
object is then assumed to consist of a subset of possible parts
(e.g. clothing items like “hat”, “skirt”, or “boots”). Our ap-
proach is to learn how to predict a single candidate top-level
object box, and then a single candidate object box for each of
the P potential object parts:

B̂obj(I) = [x, y, w, h]

B̂parts(I,Bobj) = {b̂p | p = 1, . . . P},

where each candidate part box b̂p = [xp, yp, wp, hp] is depen-
dent on both the image I and the top-level object box Bobj(I).
Note also that the total number of boxes which are generated
by our network is P + 1.

The object and object-part boxes can be estimated us-
ing regression based on the internal representation of images
in intermediate layers of Convolutional Neural Networks
(CNNs) [9, 12]. Instead of directly estimating the parts from

the image, we model them to be dependent on the estimation
of the top-level object. Therefore, it is necessary to regress
the object and parts in two stages. This will allow us to train
the network end-to-end in order to simultaneously estimate
an object and its parts.

2.2. An end-to-end network for object part recognition

The network we use for object and object-part detection is il-
lustrated in Fig. 1. The network is designed to simultaneously
estimate B̂obj(I) and B̂parts(I,Bobj). We first discuss each
component in the architecture of our network, then describe
the loss function that is optimized for training.

Fig. 3. Results on Fashionista. (top row) Images with cor-
rectly detected clothing items (green). (Bottom row) Images
with some items wrongly detected (red) or missed (blue).



Fig. 2. Results of the non-hierarchical (in dotted lines) and the hierarchical network (in solid lines). Bird detection is given in
red and part (’body’ and ’head’) detection in yellow. Note the improvement in localization due to hierarchical network.

Network architecture. Our network is based on the VGG1024
network described in [13]. Since our architecture cascades
in sequence two detection phases, it is important to balance
performance with network size and complexity. The main
components of our network are:

• The initial part of the network (Input through conv5) is
identical to the VGG1024 network. The pretrained weights
from VGG1024 are used to initialize the first part of the
network, and fine-tuning is performed from there.

• The object prediction sub-network (in violet in Fig. 1)
which proposes a single object box in the image and con-
sists of: convobj, a 1 × 1, fully convolutional layer which
reduces the dimensionality of the incoming feature map to
32 × 30 × 30; FCobj, a 4096-unit, fully-connected layer
which provides the high-level feature representation from
which the object box position will be predicted; and OBJ,
a fully connected layer which predicts the four bounding
box coordinates of the top-level object.

• The part proposal subnetwork (in orange in Figure 1
which, given the top-level object prediction, predicts the
positions of the P parts and consists of: ROI Pooling,
a pooling layer that extracts and pools the conv5 fea-
tures from the predicted toplevel bounding box location;
convparts, which reduces the dimensionality of the incom-
ing feature map to 32 × 20 × 20; FCparts, a 4096-unit,
fully-connected layer which provides the high-level fea-
ture representation from which the part box position will
be predicted; and PARTS, a fully connected layer which
predicts the four bounding box coordinates for each of the
P potential object parts.

The network produces two loss outputs: the object loss Lobj,
which determines how well the toplevel object is estimated,
and the part loss which is an average of how well each object
sub-part is predicted.

Learning. We train the network in Fig. 1 end-to-end to min-
imize an average per-box loss over all training images. For a
training image I denote the groundtruth toplevel object box as
B∗

obj = [x∗, y∗, w∗, h∗], and similarly the set of groundtruth
sub-part boxes as B∗

parts = {b∗
p | p = 1, . . . , P}. We also de-

note by y∗p ∈ {0, 1} an indicator of whether part p is present
in the training image.

# Boxes Head Body Bbox
NH 3 0.39 0.83 0.95

H 3 0.63 0.91 0.96
Fast-RCNN & EB 50 0.36 0.82 0.97
Fast-RCNN & EB 1000 0.82 0.90 0.99

Fast-RCNN & H 3 0.81 0.92 0.98
Zhang et al. [5] >1000 0.61 0.70 -

Table 1. Results on the CUB-200 dataset in percentage of cor-
rectly localized parts. We report results for both Hierarchical
(indicated by ‘H’) and non hierarchical (indicated by ‘NH’)
predictions. Fast-RCNN results are combined with Edge Box
(EB) and our hierarchical (H) method.

The loss we optimize is the sum of the toplevel object loss,
and the constituent part losses:

L(B̂obj, B̂parts) = Lobj(B̂obj) + Lparts(B̂parts), (1)

where Lobj measures localization error for the toplevel object:

Lobj = smoothL1
(B̂obj −B∗

obj),

Lparts measures the average sub-part localization error:

Lparts =
1∑
p y

∗
p

∑
p

y∗psmoothL1
(b∗

p − b̂p),

and smoothL1(·) is the smooth `1 loss function:

smoothL1
(x) =

{
0.5x2 |x| < 1

|x| − 0.5 otherwise.

Optimizing Eq. 1 simultaneously learns multiple regressors:
one for the toplevel object and one for each part.

3. EXPERIMENTAL RESULTS

In this section we report on a number of experiments to eval-
uate our part detection method.
Datasets: In the experiments we consider three datasets.
The CUB-200 dataset [15] consists of 11,788 images of 200
bird species. Each image is annotated with bounding box,



#Boxes Bag Belt Glasses Hat Pants L-Shoe R-Shoe Shorts Skirt Tights Mean Bbox
EB 50 0.37 0.09 0.11 0.50 0.65 0.14 0.15 0.34 0.50 0.51 0.34 N.A.
EB 1000 0.72 0.28 0.60 0.81 0.82 0.35 0.38 0.77 0.68 0.75 0.62 N.A.
NH 11 0.46 0.13 0.32 0.63 0.80 0.31 0.37 0.60 0.67 0.72 0.50 N.A.

H 11 0.51 0.22 0.35 0.70 0.97 0.61 0.62 0.73 0.92 0.92 0.65 0.99
[14] >1000 0.23 0.14 0.22 0.36 0.57 0.29 0.33 0.37 0.29 0.41 0.31 N.A.

H 11 0.38 0.16 0.16 0.56 0.85 0.30 0.23 0.54 0.56 0.60 0.45 1.0

Table 2. Results in AP on the Wide Eyes fashion dataset (top four lines) and the Fashionista dataset (bottom 2 rows). We report
results for both Hierarchical (indicated by ‘H’) and non hierarchical (indicated by ‘NH’) predictions, and edge Box (EB). The
final column shows that the hierarchical approach obtains almost perfect person bounding box detection.

part location (head and body), and attribute labels. The Fash-
ionista data set consists of 685 images containing full body
views of persons and covering a variety of clothing items [16].
Here we consider clothes as parts of the object class person.
Images are annotated with groundtruth clothing labels for 53
categories. This is an example of a part-based recognition
problem where images only contain a small subset of the pos-
sible parts. The Wide Eyes fashion image dataset consists
of 19,000 images (18,000 for training and 1,000 for testing)
of full body views of persons. The images are similar to the
Fashionista dataset.

Part detection on the CUB-200 bird dataset: In this sec-
tion we report results on the CUB-200 dataset. Most previ-
ous work considers that the bounding box of the bird is pro-
vided [4, 17, 18]. Here we consider the more realistic scenario
where both the bird as well as the parts should be detected
in the image; this scenario was also considered by Zhang et
al. [5]. The results are presented in Table 1 in terms of the per-
centage of correctly classified bounding boxes. A bounding
box is considered correctly classified when they have inter-
section over union (IoU) overlap [19] with the groundtruth
bounding box of at least 0.5.

First we consider the main novelty which is the intro-
duction of hierarchical detection of object and parts. A
non-hierarchical approach would directly estimate the part
bounding boxes from the image. The results in Table 1
clearly show the superiority of the hierarchical approach. It
obtains significant gains for both parts; especially notewor-
thy is the 20% gain for heads. Next, we train a Fast-RCNN
with 1000 bounding boxes [11], and test this network with
50, and 1000 object EdgeBox proposals, and the three part
proposals from our method. The improvement in the results
of our method combined with Fast-RCNN is due to the extra
regression step which improves results especially for ’head’
parts. Fast-RCNN with 1000 bounding boxes obtains similar
results as our method with only three proposals. Finally, we
compare to the results of Zhang et al. [5]. We outperform
their results considerably, and we do so by only considering
a fraction of bounding boxes they do.

Clothing item recognition: Next we evaluate our part pro-
posal method for the task of clothing item detection. We se-

lect the same ten classes considered in [14] to compare re-
sults. Here we first detect the person and based on the features
within the person bounding box, we propose ten boxes for the
various clothing parts. We compare our approach against the
object proposal method EdgeBox [20] with a varying num-
ber of proposals. We train a Fast-RCNN [11] object detector
based on 1000 EdgeBox proposals per training image. At
testing time we test the same Fast-RCNN network providing
it with either our proposed eleven boxes, or a varying number
of boxes proposed by EdgeBox. The results are summarized
in Table 2 (first four rows). Again results show that our hi-
erarchical approach significantly improves results. Note that
our results obtained with only eleven part proposals obtain
similar results as EdgeBox with 1000 proposals per image.

Finally, we compare results to [14]. That method is based
on over 1000 proposals [7] and a deep neural network fea-
ture representation, and incorporates pose prediction and ge-
ometrical priors. To obtain results on Fashionista we finetune
our network trained on the WideEyes dataset on the Fashion-
ista dataset [16].1 Next we provide our part proposals to a
Fast-RCNN network which was only trained on the Fashion-
ista train dataset. We report results in Table 2 (bottom two
rows). The results show that we significantly outperform the
reported results of [14], although we only require a fraction
of the number of part proposals. In Fig. 3 several examples of
the detections with our network are provided.

4. CONCLUSIONS

In a single end-to-end network we propose a hierarchical ap-
proach to object and part detection. Experiments show that
the proposed network outperforms its non-hierarchical coun-
terpart, and obtains similar or better results than state-of-the-
art on two benchmark datasets while only considering a frac-
tion of the number of part proposals.
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